A sum-bracket theorem for simple Lie algebras

نویسندگان

چکیده

Let $\mathfrak{g}$ be an algebra over $K$ with a bilinear operation $[\cdot,\cdot]:\mathfrak{g}\times\mathfrak{g}\rightarrow\mathfrak{g}$ not necessarily associative. For $A\subseteq\mathfrak{g}$, let $A^{k}$ the set of elements written combining $k$ $A$ via $+$ and $[\cdot,\cdot]$. We show "sum-bracket theorem" for simple Lie algebras form $\mathfrak{g}=\mathfrak{sl}_{n},\mathfrak{so}_{n},\mathfrak{sp}_{2n},\mathfrak{e}_{6},\mathfrak{e}_{7},\mathfrak{e}_{8},\mathfrak{f}_{4},\mathfrak{g}_{2}$: if $\mathrm{char}(K)$ is too small, we have growth $|A^{k}|\geq|A|^{1+\varepsilon}$ all generating symmetric sets away from subfields $K$. Over $\mathbb{F}_{p}$ in particular, diameter bound matching best analogous bounds groups type [BDH21]. As independent intermediate result, prove also estimate $|A\cap V|\leq|A^{k}|^{\dim(V)/\dim(\mathfrak{g})}$ linear affine subspaces $V$ $\mathfrak{g}$. This valid algebras, especially small large class them including associative, Lie, Mal'cev superalgebras.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homotopy Lie Algebras and the Courant Bracket

We consider two different constructions of higher brackets. First, based on a Grassmann-odd, nilpotent ∆ operator, we define a non-commutative generalization of the higher Koszul brackets, which are used in a generalized Batalin-Vilkovisky algebra, and we show that they form a homotopy Lie algebra. Secondly, we investigate higher, so-called derived brackets built from symmetrized, nested Lie br...

متن کامل

Domestic Canonical Algebras and Simple Lie Algebras

For each simply-laced Dynkin graph ∆ we realize the simple complex Lie algebra of type ∆ as a quotient algebra of the complex degenerate composition Lie algebra L(A) 1 of a domestic canonical algebra A of type ∆ by some ideal I of L(A) 1 that is defined via the Hall algebra of A, and give an explicit form of I. Moreover, we show that each root space of L(A) 1 /I has a basis given by the coset o...

متن کامل

Simple Lie Algebras Which Generalize Witt Algebras

We introduce a new class of simple Lie algebras W (n, m) (see Definition 1) that generalize the Witt algebra by using " exponential " functions, and also a subalgebra W * (n, m) thereof; and we show each derivation of W * (1, 0) can be written as a sum of an inner derivation and a scalar derivation (Theorem. 2) [10]. The Lie algebra W (n, m) is Z-graded and is infinite growth [4].

متن کامل

On character generators for simple Lie algebras

We study character generating functions (character generators) of simple Lie algebras. The expression due to Patera and Sharp, derived from the Weyl character formula, is first reviewed. A new general formula is then found. It makes clear the distinct roles of “outside” and “inside” elements of the integrity basis, and helps determine their quadratic incompatibilities. We review, analyze and ex...

متن کامل

A Poincaré-birkhoff-witt Theorem for Generalized Lie Color Algebras

A proof of Poincaré-Birkhoff-Witt theorem is given for a class of generalized Lie algebras closely related to the Gurevich S-Lie algebras. As concrete examples, we construct the positive (negative) parts of the quantized universal enveloping algebras of type An and Mp,q,ǫ(n, K), which is a nonstandard quantum deformation of GL(n). In particular, we get, for both algebras, a unified proof of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2023

ISSN: ['1090-266X', '0021-8693']

DOI: https://doi.org/10.1016/j.jalgebra.2023.05.012